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Executive summary

Boundary flows are a critical piece of data required in predicting the evolution
of traffic flow over some time horizon. They are sometimes encoded as Origin-
Destination (O/D) matrices, and represent the future loading of the network. This
piece of knowledge is very important for both estimation of traffic (in particular
forecast), routing, and traffic flow control, for example model predictive control in-
volving the optimization of traffic over a finite horizon.

This report presents a new boundary condition estimation framework applicable
to transportation networks in which the state is modeled by a first order scalar con-
servation law. This framework is based on the classical Lighthill Whitham Richards
(LWR) traffic flow model, which is here equivalently described as a Hamilton-Jacobi
equation. Inspired by previous work on traffic flow control over networks, we for-
mulate the problem of estimating the boundary conditions of the system over a
network, as a Mixed Integer Linear Program (MILP), or Linear Program (LP). We
show that this framework can handle various types of traffic flow measurements,
including floating car data or flow measurements. To regularize the solutions, we
propose a compressed sensing approach in which the objective is to minimize the
variations over time (in the L; norm sense) of the boundary flows of the network.
We show that this additional requirement can be integrated in the original MILP
formulation, and can be solved efficiently for small scale problems.

We solved the boundary flow estimation problem on two example problems in-
volving simulated initial density data, though floating car data can be incorporated
in this framework as internal boundary conditions. With the compressed sensing
term regularizing the flow estimates, this algorithm gives the simplest solution (in
the sense of solution with the least amount of features) to the problem that satisfies
both the constraints of the model and the data.

Significant challenges remain for scalability to practical networks, which can
involve tens to hundreds of thousands of links, and which are not tractable with
the current formulation. Future work will focus on these issues, and on the possible
integration of non-model based approaches with the algorithm investigated in the
present report.
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0.1 Introduction

Physical systems driven by Partial Differential Equations (PDEs) are very common
in engineering, biology, physics and chemistry. Such systems are often referred to as
Distributed Parameter Systems, as their state is infinite dimensional. In the context
of transportation engineering, the flow of traffic is usually modeled as such, using
various classes of PDEs, most notably first [24, 28] and second order [2, 5, 15, 14]
traffic flow models.

Among these distrubted parameter systems (which can be modeled by the pre-
viously cited PDEs), the transportation network is of critical importance, and its
performance has a dramatic impact on both our lives and the economy. Traffic con-
gestion is a considerable issue worldwide and is expected to become worse as global
traffic demand increases. With a yearly cost estimated at $700 per driver in the
USA, congestion costs more than one week of wages for the average American. It
also has a significant impact on air pollution, and causes an estimated 2% increase
in fuel consumption, in addition to the economic losses induced by delays.

Reducing traffic congestion can be achieved by increasing the capacity of roads
(which is expensive), modifying user demand, or actively controlling traffic using
for instance adaptive speed limits, ramp metering, or traffic signal control. Traffic
flow control [8, 27] is a very promising direction for reducing traffic congestion, as
it does not require expensive road construction, and does not require the control
of user demand, which is sometimes impractical (for instance during work hours).
However, traffic control also requires to precisely estimate the boundary flows that
will apply to the network, a problem known as Origin-Destination (OD) matrix
estimation.

While a large body of literature focuses on the problem of OD matrix estima-
tion [31, 29, 30, 19], little has been done in fusing real-time measurements into a
model-based framework to estimate the possible boundary conditions. Indeed, one
of the difficulty of the Origin-destination estimation problem is the sheer number
of variables, and the low amount of available data, which makes it a greatly under-
determined problem. Integrating models with large-scale systems is also complex,
since the computational time required to process the large scale datasets associated
with O/D estimation problems can make the problem intractable.

In this report, we propose to address both issues outlined above by developing
a framework based on the Lighthill Whitham Richards (LWR) [24, 28] Partial Dif-
ferential Equation (PDE) with triangular flux function on transportation networks.
Using an equivalent Hamilton Jacobi formulation of the LWR PDE, we show that
the problem of estimating the boundary flows at the boundaries of a link can be
posed as a Mized Integer Linear Program (MILP). We then extend this formulation
to the network problem (with junctions), and show that the global boundary flow
estimation problem is also a LP or a MILP, and can be solved efficiently on a regular
desktop computer, yielding an optimal solution to the estimation problem. Given
that the problem to solve is greatly underdetermined, we propose a compressed
sensing [20] approach to regularize the solutions, by minimizing the L; norm of the
flow variations across the boundaries.

The rest of this report is organized as follows. Section 0.2 reviews the framework
for the traffic estimation developed in [6] using the LWR traffic flow model. We
then derive the optimal boundary flow estimation problem as a LP (or a MILP
depending on the objective function used in the problem) using the traffic density



estimation investigated earlier. Section 0.5 presents the boundary flow estimation
problem on a single highway link. We then generalize this problem in Section 0.6
to the boundary flow estimation of a general highway network containing multiple
mainstreams, junctions and on/off-ramps. Flow conservation constraints at the
junctions are defined using a set of equalities derived from [22], and are incorporated
in the control problem, resulting again in a LP or a MILP.

0.2 Model Definition
0.2.1 Traffic low model

In this report, we define one link on a highway section as P := [£, x| where £ and x
respectively represent the upstream and downstream post miles of the link on the
highway. This link can be described by a density function p(t,z), which depends
on both space and time, and which evolves according to a traffic model. One of
the most commonly used macroscopic models for the traffic flow is the Lighthill-
Whitham-Richards (LWR) model [24], [28]. Since the state itself is a function,
this model is a distributed parameter systems, encoded by the following Partial
Differential Equation (PDE):

Ip(t,x) = O(p(t,x))
ot T on

=0 (1)

While the description of the state by the density function is widely adopted, the
LWR PDE exhibit shocks (discontinuities), which are features inherent to hyperbolic
PDEs. To avoid dealing with these discontinuities, we can alternatively describe
traffic as a scalar function M(-, -), known as the Moskowitz function [25], [26], which
is obtained by integration of the density function. The Moskowitz function satisfies
the following Hamilton-Jacobi(HJ) PDE, obtained by integration of the LWR PDE:

3M(t,x)_w< 8M(t,x)> . )

ot - Oz

The Moskowitz function is also known as the Cumulative Number of Vehicles
function, and can be thought of as follows. Let us label vehicles on the stretch of
highway [, x] with an increasing order, with respect to a given reference vehicle.
The Moskowitz function M (t,x) represents (up to a constant of integration) the
label of the vehicle that is closest to location x, at time t. While this function
is technically a discontinuous function, solutions to equation (2) are typically con-
tinuous, which corresponds to a continuum approximation of traffic. In the above
equation, the function ¢(-) is known as the Hamiltonian, of Fundamental Diagram.
In the remainder of this report, the Hamiltonian is assumed to be the following
continuous and concave triangular function:

o vrp ipE [07/)6]
vle) = { w(p =£) 1 p € [pe; il ®)

where p. and p,; are respectively the critical and maximal traffic density related by
the following formula.
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The capacity of the stretch of highway (which corresponds to the maximal
throughput) is p. - v¢. While the method investigated in this report could be
applied to general concave flux functions, a piecewise linear flux function allows
us to pose the control problem as a Mized Integer Linear Program (MILP), while
general concave flux functions would result in a Mized Integer Convex Program, for
which no efficient computational methods are currently available. Note that trian-
gular fundamental diagrams are very commonly used in traffic [18], since they are
very robust and depend on a minimum number of parameters (3) that are easy to
physically interpret.

0.2.2 Solutions to the Lighthill-Whitham-Richards equation

One of the several classes of weak solutions to equation (2) is known as the Barron-
Jensen/Frankowska (B-J/F) solution [3], [21], which are investigated in this report.
The B-J/F solutions to equation (2) are fully characterized by the Laz-Hopf formula
, which was initially derived using the control framework of viability theory [4].
Note that B-J/F solutions to Hamilton Jacobi PDEs are equivalent to viscosity
solutions [17], which are continuous, if no internal conditions are considered as part
of the solution. If internal conditions are considered in the problem, the B-J/F
solutions to the PDE are lower-semicontinous in general.

Solving partial differential equations requires the definition of initial, boundary
and internal conditions, which can be encoded as the general concept of value con-
ditions [11]. Such conditions encode a constraint on the value of the solution to
the HJ PDE (2), these constraints being set on a line segment of the space-time
domain.

Definition 1 (Value Condition) A value condition c(-,-) is a lower semi-continuous
function defined on a subset of [0, tmaz] X [£, X].

In this report, we assume the value conditions are affine functions of space and
time, defined on a line segment of Ry x X. Given an arbitrary value condition
c(+,+), we define its associated solution Mc(-,-) to HJ PDE (2) using the following
Lax-Hopf formula [1].

Proposition 1 (Lax-Hopf formula) Let(-) be a concave and continuous Hamil-
tonian, and let c(-,-) be a value condition, as in Definition 1. The B-J/F solution
Mec(-, ) to (2) associated with c(-,-) is defined algebraically by:

Mc(t, x) = inf (c(t =T,z +Tu) +Te*(u)) (4)
(u,TyeDom(e*) xR
where the function ¢*(-) is the Legendre-Fenchel transform of the upper semicon-

tinuous Hamiltonian (-, given by:

©*(u):= sup [p-u+1p(p)]
peDom(y)

The structure of the Lax-Hopf formula (4) implies the following important property,
known as inf-morphism property [1].



Proposition 2 (Inf-morphism property) Let the value condition c(-,-) be min-
imum of a finite number of lower semicontinuous functions:

V(t,2) € [0, tmax] x [§X], ¢(t,2) :=minc;(t,z)
jed

The solution Mq(-, ) associated with the above value condition can be decomposed [1],

[9], [10] as:

Y(t,) € 0. tmas] X €., Melt. ) = min M, (t,2)

The inf-morphism property is a consequence of the structure of the Lax-Hopf
formula (as a minimization problem), and of the definition of the value conditions.
Another important properties of solutions to Hamilton-Jacobi PDEs is known as
inf-convolution [1].

In this report, we consider initial, upstream and downstream boundary, and
internal conditions. For simplicity, we assume that these conditions are piecewise
linear, and continuous, which can be physically interpreted as piecewise constant
initial densities and piecewise constant boundary flows.

0.3 Affine initial, boundary and internal conditions

Multiple types of value conditions can be incorporated into a control or estimation
problem. In the present article, we include initial, boundary and internal conditions.
The initial and boundary conditions are typically measured (with some error) using
fixed sensors, such as inductive loop detectors, magnetometers or traffic cameras.
Similarly, the internal conditions are partially measured using probe vehicle tra-
jectories. Additional types of traffic-generated constraints can be thought of, for
example constraints on the internal density of traffic, or constraints on the travel-
time (which differ from internal conditions), or even hybrid components [12], though
these constraints are not investigated in the present report.

0.3.1 Definition of affine initial, boundary and internal con-
ditions

The formal definition of initial, upstream, downstream and boundary conditions
associated with the HJ PDE (2) is the subject of the following definition.

Definition 2 [Affine initial, boundary and internal conditions] Let us de-
fine K = {0,...,kmax}, N ={0,...,nmax} and M = {0,...,mmax}. Let T and
X represent a temporal and spatial discretization step respectively (though an uni-
form discretization is chosen for convenience, and is not required by the mathe-
matical framework). For oall k € K, n € N and m € M, we define the following
functions, respectively called initial, upstream, downstream (boundary) and internal
conditions [15]:

~ Y5 p(0)X

—p(k)(x —kX) if t=0 (5)
and z € kX, (k+1)X]

+00 otherwise

Mk(t,x) =



Z?;()l Gin (Z)T

_ ) tam(n)(t—nT) if 2=¢

'Yn(ta JI) - and t S [nT; (n + l)T] (6)
+00 otherwise

Z::ol Gout ()T
+qout(n)(t — nT)

Bult:z)={ =S4 p()X  if == (7)
and t € [nT, (n+ 1)T]
400 otherwise

Ly, + Tm(t - tmin(m))
(if £ = Zmin(m)
o (1, ) = {4 maxtm o) (4 g (1) (8)
and t € [tmin(Mm), tmax(m)])
+00 otherwise

As stated in the previous section, the initial, boundary and internal conditions
defined above are usually not known exactly. In particular, we do not know the
exact values of the initial densities p(+), the boundary flows ¢in(+) and gout () (which
are precisely the objective of the present work), as well as the coefficients L., and
rm of the internal conditions. Some coefficients such as p(-), gin(-) and gous(-) can
be known with some uncertainty using flow or traffic density sensors, but some
coefficients such as L, and r,, simply cannot be measured experimentally by any
traffic sensor. All of these unknown variables will act as part of our decision variable
for the Mixed Integer Linear Program (MILP) derived in Section 0.4. Note that the
coefficients Zmin(+), Tmax(+), tmin(+) and tmax(:) are known with high accuracy since
they are typically measured with a GPS, and will thus not be part of the problem’s
decision variable.

0.3.2 Analytical solutions to affine initial, boundary and in-
ternal conditions

Given the affine initial, upstream, downstream and internal conditions defined
above, the corresponding solutions My, (+,-), M, (-,-), Mg, (-,-) and M, (-,)
defined by the Lax-Hopf formula (4) can be computed explicitly as analytical solu-
tions [23, 7]. These expressions, in the case of the fundamental triangular diagram,
are described below. Their formulation was initially derived in |

10



1\/[1\/[,C (t, SC) =

M’Yn (t7 l') =

Mﬂn (t7 x) =

+00
Ez 0 p( )
+p(k)(tv + kX — )
and
and
Zz 0 p( )
+pc(tv + kX — x)
and
and
- Y X

+p(k)(tw + kX — x)
—pmtw
and
and
- Yo n(B)X
pe(tw+ (k+1)X —x)
—pmtw
and

and

+00

ZZL O1 Qm( )T
+ain(n)(t — 555 = nT)

11

if z<kX 4+ wt
or > (k+1)X + vt

if kEX+tv<z
k+1D)X+tv>z
p(k) < pe

if kX +tv>x
kX +tw <z
p(k) < pe

if kX +tw<z
(k+1)X +tw >z
p(k) = pe

if (k+1)X+to>x
(k+1)X +tw <z
p(k) = pe

if t<nT+%2%

if nT+ 25 <t
and t < (n+1)T
_|_L*§

v

> io @i ()T

+pev(t—(n+1)T — ’”;5) otherwise

+o00 if t<nT
42X

= ok )X + 70 dous(i)T

Fout(n)(t — =5* —nT)

—pm(x —X) if nT
+55 <t

and t<(n+1)T

_,_u

= p(k) X + Y Gout (1) T

+pev(t — (n 4+ 1)T — £=X) otherwise

(10)

(11)



Lo+

if & > min(m) + 0™ (M) (¢ — tmin(m))
and & > Tmax(m) + v(t — tmax(m))

and & < Tmin(m) + v(t — tmin(m))

Lo+
o (1 =t o) o)
_ w_wmin(m)_Umcas(m)(t_tmin(m))
M, (t,2)={ TFe(v =) W= (m) (12)

if 2 < zpin(m) + 0™ (m)(t — tmin(m))
and z < Tmax(m) + w(t — tmax(m))
and & > Zyin(Mm) + w(t — tmin(M))

Ly + 7 (tmax(m) — tmin(m)) +

(1~ fr (m)) K (0 — 22l

if # < Zmax(m) + v(t — tmax(m))
and = > Tmax(m) + w(t — tmax(m))
400 otherwise

These analytical expressions of My, (-, ), M, (+,-), Mg, (+,-) and M, (-, -) are
critical: they allow one to compute the solution to the HJ PDE (2) semi-analytically,
from the inf-morphism property. They also enable one to formulate the problem
of reconstructing initial (or boundary conditions, as in the present case) as an
optimization problem. The first step in this process is to define the constraints
defined by the Hamilton-Jacobi PDE (2).

0.4 Constraints arising from model and measure-
ment data

We consider a set of block boundary conditions c¢; defined as in Section 0.3.1, with
unknown coefficients. Let us call V' the hyperrectangle of unknown coefficients (V'
is an hyperrrectangle since all the coefficients are real numbers that are bounded
in magnitude, and of definite sign). Our measurement data (from the data set)
constraints the possible values of these coefficients. Such constraints are called data
constraints. Similarly, the model compatibility conditions also constraint the possi-
ble values of the unknown coefficients. Such constraints are called model constraints,
and are outlined in Section 0.4.1.

0.4.1 Model constraints

We now describe the constraints of the Hamilton-Jacobi PDE (2) using the analyti-
cal solutions defined above as well as the inf-morphism property. These constraints
were initially derived in [11], from the compatibility of boundary conditions blocks
and solutions.

12



Proposition 3 [Model constraints] The constraints of the Hamilton-Jacobi PDE (2)
can be expressed as the following finite set of convex inequality constraints:

My, (O7xp) > Mp(oaxp) V(k‘,p) e K?
M, (T, x) > 5p(pT, X) Vk e K,Vp e N
M, (X_?Hl s X) >

Bp (X2 x) VkeK,VpeN s. t.
T e T (13)
(p+ 1)T]

M, (pT, &) > v (T, €) Vk e K,Vp e N

My, (5522,6) > 7, (5522,¢) VEEeK,VpeN s. t.
S € [pT, (p+ 1)T]

MJVIk (tmin (m)a Zmin (m)) 2 Hm (tmin (m), ZTmin (m))
Vk e K,Vm e M
Mg, (tmax (M), Tmax (M) > i (Emax (M), Zmax(m))
Vk e K,Vm € M
Mg, (t1(m, k), z1(m, k) > (T (ms k
Vk e K,Ym e M s. t. t1(m, k) €
My, (tQ(mv k)7 C5'2(7n> k)) > Mm(t2(m7 k
Vk e K,Ym e M s. t. ta(m, k) €
M, (t3 (m7 k)v €T3 (m7 k)) > m (t3 (m7 k
Vk e K,Ym e M s. t. t3(m,k

M,, (pT',€) > v, (pT',§) V(n
M, (T, x) > Bp(pT, x) VY(n,p) € N?
M, (nT + X=5,x) > B,(nT + 5,x) V(n
X=£ ¢ [pT, (p+ 1)T)

v

M'yn (tmin(m)a xmin(m)) 2 Hm (tmin(m)a xmin(m))
Vn € N,Vm e M
M., (tmax(M); Tmax (M) > fm (fmax (M), Tmax(m))
Vn € N,Vm € M
M’Yn (t5 (mv n)a L5 (m’ n)) > lm (t5 (m, n)7 Ts (m» TL))
Yn e N,Vm € M s. t. t5(m,n) € [tmin(Mm); tmax(m)]

Mg, (pT',€) = 7p(pT'€) V¥(n,p) € N2

Mg, (nT + X&) > (T + £X,€) V(n,p) €N? 5. t. nT+
X € [pT, (p+ 1)7] (17)

(16)

Mg, (pT', x) > Bp(pT, x) V(n,p) € N?

13



Mg, (tmin (M), Zmin(m)) > o (min (M), Tmin(m))
Vn e N,Vm e M
M3, (tmax (M), Zmax () = fm (Emax (M), Tmax (m))
Vn e N,Ym e M
M,Bn (tﬁ (mv n)a Tg (mv n)) > (tﬁ (m, n), Te (mv n))
Vn € N,Vm € M s. t. tg(m,n) € [tmin(M); tmax(m)]

M, (pT, &) = v, (0T, §) V(m,p) € M x N (vii)(a)
M,,, (t7(m), &) = v (tz(m),£) V(m,p) € M x Ns. t.

tz(m) € pT, (p+ )T (vii)(b) (19)
M, (ts(m),&) > vp(ts(m),§) V(m,p) € M x Ns. t.

ts(m) € [pT, (p+ 1)T] (vii)(c)

M,,, (pT, x) = Bp(pT, x) V(m,p) € Mx N (viii)(a)
My, (to(m), x) = Bp(to(m),x) ~ V(m,p) € M x Ns. t.

to(m) € [pT, (p+ 1)T] (viid)(b)  (20)
M, (tio(m),x) > Bp(tio(m),x) V(m,p) € M x Ns. t.

tio(m) € [pT, (p+ 1)T] (viii)(c)

M, (tmin (p), Tmin (p)) > Np(tmin (p), Tmin (p))
V(m,p) € M? (iz)(a)
M,... (tmin(P); Tmax(p)) > ﬂp(tmax (P); Tmax(p))
V(m,p) € M?  (ix)(b)
M,,,, (ti1(m, p), 211(m, p)) = pp(ti1(m, p), z11(m, p))
Y(m,p) € M? s. t. t11(m, p) € [tmin(D), tmax(p)]  (iz)(c)
M,.,, (tiz(m, p), x12(m,p)) = pp(ti2(m, p), 12(m, p))
V(m,p) € M? s. t. t12(m, p) € [tmin(P); tmax(P)]  (i7)(d)
M,.,. (ti3(m, p), 213(m, p)) = pp(tis(m, p), z13(m, p))
V(m,p) € M? s. t. t13(m, p) € [tmin(P); tmax(P)]  (iz)(e€)
M,,,, (tia(m, p), x14(m,p)) = pp(tra(m, p), x14(m, p))
V(m,p) € M? s. t. t14(m, p) € [tmin(P); tmax(p)]  (i7)(f)
M,.,, (ti5(m, p), z15(m,p)) = pp(tis(m, p), 15(m, p))
V(m,p) € M?s. t. t15(m, p) € [tmin(p), tmax ()] (i7)(g)

(21)

) 331( ) t2(m k)7 xQ(ma k)7 tS(mvk)a x3(m7k)a
(m,n), tg(m n), xe¢(m,n), tz(m), ts(m), to(m),
(m,p), z12(m,p), tiz(m,p), z13(m,p), tia(m,p),
p) are given by equations (22), (23) and (24)

where the coefficients t1(m, k
ta(m, k), x4(m,k), ts(m,n), xzs(m
tio(m), t11(m,p), x11(m,p), t12
x14(m, p), t15(m,p) and z15(m,
below:
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and

t1(m, k) = Lminlm) =0 Dy () onin ()

x1(m, k) = Tmin(m)—+

pmeas () ((Emen (et () () )
faim, ) = 2o E e o)

To(m, k) = Tmin(m)+

pmeas () ((Emin (T () g (m) )

w—v “‘Cl:zgzn)

tg(m, k‘) _ zmin(m)75§;I1as(wf)rn)t,mn(m)
1‘3(777/, k) = xmin(m)‘i’

meas Tmin(Mm)—kEX—v"" (M) tmin(m
v (m) (m) U_Umoas(wg) )t (m) *tmin(m))
o) = 2l s o)
1‘4(7’1’1/, k) = mmin(m)‘i‘

meas Tmin(Mm)—(k+1) X 0™ (m)tmin(m

(m) ( ( ) ( jl;i)vmcas(m)( )t ( ) - tmin(m))

(%

nTv—v"* (M) tmin (M) +Tmin(m)—&
v—™eas ()
x5(m,n) = Tyin(m)+
V™S (m) nTU_”meas(ﬁiﬂﬁgﬁijxmi"(m)_g - tmin(m))
te(m,n) = "Tw*vmeasEﬁiﬁlliﬁ);zm‘“(m)fx
x6(m,n) = Tyin(m)+

V™33 () "Tw_vmeasZ@iﬁl&?ﬁg—mmm(m)_x — tmin(m))

ts(m,n) =

(23)

tr(m) = §—Zmin (M) +Wtmin (M)
tg(m) = §*wmax(m1):+wtmax(m)
to(m) = xfxmin(mzfvtmm(m)
tio(m) = X*wmax(mzjrvtmax(m)
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— Tmin (M) =Tmin (P) +0™* (P) tmin (P) —0™** (M) tmin (M)
tll(mvp) =2 Tt pvn};as(p)zivmeas?rn)v “ =
xn(m,p) = xmin(p) =+ Umcas(p)( - tmin(p)"’
wnlin(m)7wn)in(p)+vmc(as)(p)trniu(?)vacas(m)tnlin(m)

pmeas (p) —ymeas (mp

_ Imax(m)_ajmin(p)+vmcas(p)tlyli1\(p)_'Utmax(m)
t12(m7p) - ,Umeas(p)fv
Il?(mvp) = xmin(p) + vmeas(p>( - tmin(p)+
wmax(m)7wmin(p)“l’vmc(as)(p)tmin(p)*vtmax(m)

vmeas (p)—u
min —Zmin (P) +0™* (P)tmin (P) —Vtmin
t13(m7p) =2 (m) = (p)vn;ueas(p)(zi)v (p) ‘ (m)
213(m, ) = Tuin(p) + 07(p)  ~ tuin(p) + (24)
wmin(m)_1min(p)+vmc(as)(p)tmin(p)_vtmin(m)
vmeas (p)—u
max —Zmin (P) +0™** (P)tmin (P) —VEmax
t1a(m, p) = T Tein D P i ()~ Ve ()

715(m, p) = Tmin(p) + ’Umeas(P)(
Zmin (M) = Tmin (P) +0™"* (p)tmin (P) —Vtmin (M)

11714(777,,[7) = xmin(p) + ,Umeas(p>( - tmin(p)+
1max(m)_1min(p)+vmcas(p)tmin(p)_vtmax(m)
o) (207 ()t p) o)
— Zmin (M) =Zmin (P)+0"°** (D) tmin (P) —Vtmin (M
tls(m7p) - vmeas(p)iw

- tmin (p)+

Proof —
() and that V(k,

pmeas (p) —w

First observe that V(k,n) €

n) € [0, kmax] X

)

straints that ensure that a set of initial, upstream, downstream and internal condi-

tions is defined in the strong sense (that is, the solution M, satisfies M (-

on the domain

Dom(c)) are:

) =el)

My, (0,2) > M,(0,z) Vz € [pX, (p+ 1)X],V(k,p) € K2

My, (t,x) > Bp(t,z,) YVt € [pT, (p+ 1)T),V(k,p) € K2

Moy, (t,€) = (t.§) Yt € pT, (p+ 1T, V(k,p) € K?

My, (8, 2) > pim(t,2) Yt € [tmin(m)» tmax(m)]s T = Tmin(m)+
V™ (M) (t = tnin(m))V(k,m) € K x M

M, (t,€) > (t,&)  vte [pT, (p+1)T],Y(n,p) € N°

M., (t,§) = By(t,§) YVt [pT, (p+ 1)T],Y(n,p) € N?

M., (t,2) > pm(t,z) YVt € [tmin(m), tmax(m)]s T = Tmin(m)+ (25)
V™ (M) (t = timingm))V(n,m) € N x M

Mg, (t,£) = (t,&) vt e [pT, (p+ 1)T], (%P) € N?

Mg, (t,€) > Bp(t,€) VYt € [pT, (p+ 1)T],Y(n,p) € N?

Mg, (t,2) > pm(t,2) YVt € [tmin(m)> tmax(m)]> T = Tmin(m)+
™ (M) (t = tmin(m))V(n,m) € N x M

My, (t,2) > pm(t,z) ¥t € [tmin(m)s tmax(m)]s T = Tmin(m)+
V™S (M) (t = timin(m))V(k,m) € M x M

The inequalities outlined in Proposition 3 result from the above constraints,
which can be written as a finite set of inequalities owing the piecewise affine structure

of the solutions (9), (10), (1

1) and (12).
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An important property of the model inequality constraints is that they are
piecewise linear convex in the unknown boundary condition coefficients. These
constraints are also indendent of the measurement data associated with the prob-
lem: they only depend upon the relative positions of each of the initial, upstream,
downstream and internal boundary condition blocks.

While these initial, boundary and internal condition coefficients are subject to
the above model constraints, measurement data yields additional constraints on
their possible values, by restricting for example the possible values that flow, density
or labels can take. These constraints are independent from the model constraints,
and are enforcing that the unknown initial and boundary condition coefficients are
compatible with measurement data, allowing some degree of difference between
measurement and decision variables. The difference allowed between the true value
of the densities or flows and the corresponding measurements is a function of sensor
performance characteristics. The internal conditions are not associated with any
data constraints, as the data is embedded in their position information (in the space
time domain), which is assumed to be perfect. In the remainder of this report, we
assume that the data constrains are linear inequalities in the unknown coefficients of
the initial and boundary conditions. This can for instance model situations in which
the L; and L., measurement errors of a sensor are upper bounded by some value.
Note that a sensor for which the measurement error is bounded in the Lo norm
sense would yield convex quadratic data constraints, which would yield linear and
quadratic convex constraints (QC). Constraints in the L, norm sense yield in general
convex constraints, though these constraints may not be easily implementable on
standard convex optimization software. In practice, sensor performance is usually
given in the L., norm sense.

Thus, defining y as the decision variable: y := (p,-m(l), ooy Pini(km) s qin (1), - .
Gin(Mm), Gout (1), . .. q(mt(nm)), a traffic estimation problem can be posed as the
following optimization program, with linear inequality constraints:

Minimize f(y)
st Amodely § bmodel (26)
o Cdatay S ddata

In the above problem, f(-) is the objective function (used to select a solution among
all solutions satisfying the model and measurement data constraints) for the traffic
estimation under the compatibility constraints from the physical conditions and
sensor measurements. See [13] for applications of this framework to various traffic
flow estimation problems.

0.5 Boundary flow estimation on a single highway
link

In the previous section, we showed that the constraints arising in general esitmation
and control problems were piecewise linear convex (that is, linear) in some decision
variable. In this section, we briefly extend this formulation to boundary estimation
problems over highway sections.

The model constraints place physical limitations on the feasible values of the
decision variable that arise from the configuration of the problem, together with
the traffic flow model.
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0.5.1 Data constraints

In the subsequent problems, we assume that initial conditions are given and cannot
be controlled. For instance, in the examples below, the initial condition is fixed by
setting prescribed measurements p(m)™¢% resulting in linear equality constraints
in the decision variable described above.

Conversely, we assume that the inflows and outflows (g;,(t) and gou:(t)) on the
highway link are unknown, though, again, the proposed framework can also handle
situations in which flows are partially or completely known, through the addition
of data constraints.

0.5.2 Objective function

Several objective functions can be considered when solving the bondary estimation
problem. These functions include: maximizing or minimizing the total average flow
across both boundaries, minimizing the difference between the actual boundary
flows and estimated target values (this minimization can be done in the Ly, Lo or
L sense, or simply having the most regular solution, that is the solution for which
the variations of the flow in the L; norm sense are minimal (which is the objective
function used as part of the compressed sensing problem).
In this preliminary example, we choose to minimize the boundary flows:

Minimize Y ;7 (¢in (i) + qout (7))
st Amodely < bmodel (27)
o Ameasy < bmeas

0.5.3 Compressive sensing

Compressive sensing is a promising way of solving underdetermined problems, such
as the problem that we are solving in the present report. Compressed sensing uses
the L; norm in optimization problems to impose sparsity in a solution, in that,
the solution vector generated by a problem involving compressed sensing will be
sparse, that is, have a large number of zero entries. Sparsity is particularly useful
in boundary estimation problems, in which the flow is assumed not to vary much.

To regularize the solutions in the subsequent problems, we add an additional
Ly norm term in the objective. This term minimizes the difference between the
consecutive boundary flows, in the form

p—1
A (|QZn(7l + 1) - %n(l)| + |qout(i + 1) - QOut(i)D (28)
i=1

3

This constraint ensures that the consecutive values (in time) of the estimated
boundary flows do not vary much in time.

0.5.4 Implementation

In the implementation of the above problem, we consider a single section of road,
with constant model parameters (free flow speed, congestion speed, capacity) across
both space and time.

The link is divided into 6 segments of equal length X = 200 meters. The initial
density measurements on 6 segments are defined as 6 piece-wise affine constants that
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represent free flowing traffic. We also simulate 20 boundary conditions (10 boundary
condition blocks associated with the upstream boundary, and 10 boundary condition
blocks associated with the downstream boundary) with a granularity of T= 30 s.
The boundary flows are variables in the present problem.

We solve the LP (27) using IBM Ilog Cplex on a Macbook operating MacOS
X. As illustrated in Fig. 1, the optimal boundary flow estimation problem shows
both the minimal and maximal flows that can be associated with the defined initial
condition, while satisfying the constraints of both the model and the data. This
type of problem involves a few tens of variables and a few hundreds of constraints,
and was solved in a few milliseconds.

0.5.5 Computational complexity

Unlike gradient-based methods, the present formulation does not rely on a dis-
cretization of the PDE, and does not require that the solution is computed in all
points of a computational grid. Let n represent the number of cells, and m represent
the number of time steps. The number of decision variables required to solve such
problems is at least n X m, since the effects of the model are propagated through
all cells, at all times. Our approach requires less variables: only 2 x m variables
are required for each link, assuming that the initial densities are fixed. If the con-
sidered links contain more than a few discretization steps, the present method can
significantly improve the performance of boundary flow estimation in comparison
with respect to classical methods.

0.6 Generalization to Highway Networks

In the subsequent sections, we present a preliminary extension to boundary estima-
tion in a highway network. In the remainder of this report, to avoid confusion with
the terms gin, ¢ous when modeling the junctions, we replace them with ¢%*, ¢% to
denote upstream and downstream flows on links.

0.6.1 Network model

The highway network is modeled as a directed graph consisting of vertices v € V
and edges e € £. Each edge represents a link on the mainstream highway with a
length L. and a set of physical parameters (e.g. the speed limit v;,,4,, the number
of lanes W, € N*). On-ramps on € ON are defined as a special edge with length
Lon — 0, and a set of parameters (e.g. Umqae, a number of lanes W, € {0} UNT),
and a direction to a vertex v. Off-ramp of f € OFF are defined similarly with
Wors € {0} UNT and a direction out from a vertex v. A junction j € J is defined
as J; = (vj,Z;,0;,0n;,of f;) and consists of a vertex v; € V, a set of incoming
edges e;, € Z;, a set of outgoing edges ey, € Of, an on-ramp on; € ON and an
off-ramp of f; € OF F. Note that this framework allows us a great deal of flexibility
in defining arbitrary highway networks: if no on-ramp or off-ramp is present on a
given section, we can set the number of lanes corresponding to the on- or off-ramp
to zero, and eliminate it. An example of network layout is illustrated in Fig. 2.

To generalize the boundary estimation framework across junctions, we make the
following assumptions:
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Figure 1: Boundary flow estimation on a single link: In this example, the
initial condition is fixed. We compute the solutions respectively associated with
the minimal and maximal possible values of the boundary flows (as defined in (27),
modulo a sign change for the maximization of the flows). The top figure corre-
sponds to the flow maximization scenario. The bottom figure represents the flow
minimization scenario. In both figures, the compressed sensing term (28) was added
to the objective to regularize the boundary flows.
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Figure 2: Network graph definition: Several highway links are connected by
junctions. Each junction can have one on-ramp, one off-ramp, both, or none.

1. Junctions have no vehicle storage capacity.

2. At each junction Jj, the incoming flows from Z; and on; are routed to outgoing
edges O; and of f; according to a preference matrix.

With these assumptions, at a junction j € J with incoming edges e;, € Z;,
outgoing edges e,y € O;, one on-ramp on € ONj, and one off-ramp of f € OF F,
the variables of interest are related by equation (29) below:

¢ %[5
= of f 29
5 =] e (20)

Column vectors ¢** and ¢% contain ¢** (t,&,..); 42 (t, Xe,,) denoting the up-
stream and downstream flows on respective links.

The variables ¢$"(t, ) and q;-)f ! (t,-) are scalar values representing flows on on-ramps
on and off-ramps of f.

Aj is a |0, x |Z;| matrix, where each element o, (t) denoting the percentage of
the incoming flow ¢Z* (£, xe,,,) at this junction routed to an outgoing link e,y € O;.
A" is a |O;] x 1 matrix, where each element gy, (t) denotes the percentage of the
on-ramp flow ¢" (¢, ) routed to an outgoing link ey € O;.

Bj is a 1 x |Z;| matrix, where each element 32//(t) denotes the percentage of the
incoming flow ¢%* (¢, xc,,) routed to the off-ramp of f € OFF.

From the conservation of vehicles across the junction, the total outflow from the
junction is equal to the total inflow. Therefore, the parameters in Equation (29)
satisfy:

Yool O=1-500t) Vieg (30)

€out,€in
€out on

Note that this linear formulation misses an important additional constraint: the
inflows and outflows entering and exiting a junction are typically maximized at all
times [16], which is not enforced in the present formulation. This maximization
comes from the intents of the drivers to arrive to their destination as early as possi-
ble. Known as the entropy condition, this condition would result in the definition of
additional Boolean variables to represent the possible evolution of flows across the
junction, which would significantly affect the computational time of the problem.
To maximize the performance, we impose a corresponding term in the objective
function, which corresponds to the maximization of boundary flows at all junctions,
and for all times. Since this objective contradicts the original objective (for example
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the Lp regularization objective), these constraints are not strictly enforced, and the
solution to the corresponding optimization problem is approximate.

0.6.2 Formulation of the network boundary estimation prob-
lem

The model and data constraints for the single link boundary estimation problem (27)
still apply on each link of the highway network. The model for junctions in Equa-
tion (29) (30) can be incorporated into the linear program as equality constraints.

Let us consider a highway network with links £ and junctions J. We define a
new decision variable y as

Link 1 Link n

Y= [0, ), i (t ey )5 0T (6 Xer )s - P10,
q?n(tv ')» .. ,7q$7?(t9 )]

The variables ¢§"(t,-),...,q%"(t,-) can be regarded as the terms optimized in
the present formulation. By defining a certain objective function f(-), the traffic
boundary estimation problem can be posed as an optimization problem in which
the constraints of the model and of the data are linear.

Minimize  f(y)
Amodely S bmodel
31
s. t. Cdata,y — ddata ( )
Econjy = fconj

0.7 Application of the boundary estimation frame-
work on highway networks

We now present a simulated application of the control framework on a toy highway
network example (consisting in a diverge of two roads) to demonstrate its applica-
bility to real-life problems. We choose the same objective function as previously,
though, different weights could be attributed to the flows going through the dif-
ferent links. Figure 3 illustrates (as previously) the two extreme examples of flow
minimization and maximization across the junction, given initial condition data.

In the above experiments, we estimate the values of the flows at the boundaries
of the network from initial condition data only, though other type of data (such
as the internal condition data mentioned earlier) could also be used as part of the
estimation problem. One difficulty associated with internal condition data is the
fact that such data requires the definition of additional Boolean variables in the
optimization framework defined above, since Barron-Jensen/Frankowska solutions
to Hamilton-Jacobi equations are discontinuous in general, and imposing continuous
solutions requires the definition of such Boolean variables [6]. This can cause the
problem to become significantly harder to solve, specifically if one wants to solve
large scale problems.

Specifically, any type of data that is not defined at the boundaries of the com-
putational domains associated with each link (i.e. either at time zero, or at the
upstream and downstream boundary of each link) will require the definition of
boolean variables, irrespective of the type of data (density, flow, or velocity). One
of the remaining challenges associated with boundary condition estimation (using
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Figure 3: Boundary flow estimation on an example road network: In this
example, the initial condition is fixed in all cases. We compute the solutions respec-
tively associated with the minimal and maximal possible values of the boundary
flows (as defined in (27), both across the junction and at the boundaries of the net-
work. The top figure corresponds to the flow minimization scenario. The bottom
figure represents the flow maximization scenario. In both figures, the compressed
sensing term (28) was added to the objective to regularize the boundary flows.
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this model-based framework) is to determine how much data can be added to large
scale problems, and where should the data be added in priority to keep a tractable
problem, yet get a relatively accurate approximate solution to the original problem.

0.8 Conclusion

This report proposes a new framework for boundary conditions estimation on trans-
portation networks modeled by the Lighthill Whitham Richards partial differential
equation. We first present an equivalent formulation of the problem based on a
Hamilton Jacobi equation. The Lax-Hopf formula and Inf-morphism property of
the solutions to the Hamilton Jacobi equation enable us to derive the constraints
from the model and the measurement as a set of linear equalities in some decision
variable. This enables us to pose the problem of single link boundary estimation
as an optimization program with linear inequalities, most often a LP. The method
can be extended to general transportation networks by modeling the propagation
of traffic in junctions as linear equality and inequality constraints. This enables us
to again pose the general problem of boundary flow estimation on networks as a
MILP.

By leveraging the intrinsic properties of the LWR PDE, the proposed framework
allows one to integrate arbitrary types of measurement data into a boundary flow
estimation problem (which is a first step towards solving OD matrices estimation
problems.

Future work will focus on the integration of the proposed framework into large
scale OD estimation problems. The main issues are computational, but also related
to the integration of human factors (human decisions, dynamic routing and dynamic
traffic assignment) into the estimation problems. Indeed, changes in traffic patterns
can also influence the route taken by users, through for example demand elasticity.
The integration of these factors in a model-based flow estimation framework is still
and open problem to date.
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